The Octagon Bar: I Want a U2 fan Boyfriend / Girlfriend - Page 26 - U2 Feedback

Go Back   U2 Feedback > Lypton Village > Lemonade Stand > Lemonade Stand Archive
Click Here to Login
 
 
Thread Tools Search this Thread Display Modes
 
Old 04-09-2005, 01:50 PM   #376
Blue Crack Supplier
 
~BrightestStar~'s Avatar
 
Join Date: Jan 2005
Location: Gettin' hot in a photobooth....livin it up in Ikeaville
Posts: 35,735
Local Time: 07:57 AM


lol
__________________

__________________
~BrightestStar~ is offline  
Old 04-09-2005, 01:52 PM   #377
Banned
 
Join Date: Nov 2004
Location: The Great Beyond//
Posts: 8,637
Local Time: 11:57 AM
Ok whats it on? I better get started....
__________________

__________________
Mullen4Prez is offline  
Old 04-09-2005, 02:09 PM   #378
Blue Crack Supplier
 
~BrightestStar~'s Avatar
 
Join Date: Jan 2005
Location: Gettin' hot in a photobooth....livin it up in Ikeaville
Posts: 35,735
Local Time: 07:57 AM
Evolution, Animals, Plants


Start reading.
__________________
~BrightestStar~ is offline  
Old 04-09-2005, 02:11 PM   #379
Banned
 
Join Date: Nov 2004
Location: The Great Beyond//
Posts: 8,637
Local Time: 11:57 AM
Ok reading up on evolution for ya
__________________
Mullen4Prez is offline  
Old 04-09-2005, 02:12 PM   #380
Banned
 
Join Date: Nov 2004
Location: The Great Beyond//
Posts: 8,637
Local Time: 11:57 AM
Evolution is a change in the gene pool of a population over time. A gene is a hereditary unit that can be passed on unaltered for many generations. The gene pool is the set of all genes in a species or population.

The English moth, Biston betularia, is a frequently cited example of observed evolution. [evolution: a change in the gene pool] In this moth there are two color morphs, light and dark. H. B. D. Kettlewell found that dark moths constituted less than 2% of the population prior to 1848. The frequency of the dark morph increased in the years following. By 1898, the 95% of the moths in Manchester and other highly industrialized areas were of the dark type. Their frequency was less in rural areas. The moth population changed from mostly light colored moths to mostly dark colored moths. The moths' color was primarily determined by a single gene. [gene: a hereditary unit] So, the change in frequency of dark colored moths represented a change in the gene pool. [gene pool: the set all of genes in a population] This change was, by definition, evolution.

The increase in relative abundance of the dark type was due to natural selection. The late eighteen hundreds was the time of England's industrial revolution. Soot from factories darkened the birch trees the moths landed on. Against a sooty background, birds could see the lighter colored moths better and ate more of them. As a result, more dark moths survived until reproductive age and left offspring. The greater number of offspring left by dark moths is what caused their increase in frequency. This is an example of natural selection.

Populations evolve. [evolution: a change in the gene pool] In order to understand evolution, it is necessary to view populations as a collection of individuals, each harboring a different set of traits. A single organism is never typical of an entire population unless there is no variation within that population. Individual organisms do not evolve, they retain the same genes throughout their life. When a population is evolving, the ratio of different genetic types is changing -- each individual organism within a population does not change. For example, in the previous example, the frequency of black moths increased; the moths did not turn from light to gray to dark in concert. The process of evolution can be summarized in three sentences: Genes mutate. [gene: a hereditary unit] Individuals are selected. Populations evolve.

Evolution can be divided into microevolution and macroevolution. The kind of evolution documented above is microevolution. Larger changes, such as when a new species is formed, are called macroevolution. Some biologists feel the mechanisms of macroevolution are different from those of microevolutionary change. Others think the distinction between the two is arbitrary -- macroevolution is cumulative microevolution.

The word evolution has a variety of meanings. The fact that all organisms are linked via descent to a common ancestor is often called evolution. The theory of how the first living organisms appeared is often called evolution. This should be called abiogenesis. And frequently, people use the word evolution when they really mean natural selection -- one of the many mechanisms of evolution.

Common Misconceptions about Evolution
Evolution can occur without morphological change; and morphological change can occur without evolution. Humans are larger now than in the recent past, a result of better diet and medicine. Phenotypic changes, like this, induced solely by changes in environment do not count as evolution because they are not heritable; in other words the change is not passed on to the organism's offspring. Phenotype is the morphological, physiological, biochemical, behavioral and other properties exhibited by a living organism. An organism's phenotype is determined by its genes and its environment. Most changes due to environment are fairly subtle, for example size differences. Large scale phenotypic changes are obviously due to genetic changes, and therefore are evolution.

Evolution is not progress. Populations simply adapt to their current surroundings. They do not necessarily become better in any absolute sense over time. A trait or strategy that is successful at one time may be unsuccessful at another. Paquin and Adams demonstrated this experimentally. They founded a yeast culture and maintained it for many generations. Occasionally, a mutation would arise that allowed its bearer to reproduce better than its contemporaries. These mutant strains would crowd out the formerly dominant strains. Samples of the most successful strains from the culture were taken at a variety of times. In later competition experiments, each strain would outcompete the immediately previously dominant type in a culture. However, some earlier isolates could outcompete strains that arose late in the experiment. Competitive ability of a strain was always better than its previous type, but competitiveness in a general sense was not increasing. Any organism's success depends on the behavior of its contemporaries. For most traits or behaviors there is likely no optimal design or strategy, only contingent ones. Evolution can be like a game of paper/scissors/rock.

Organisms are not passive targets of their environment. Each species modifies its own environment. At the least, organisms remove nutrients from and add waste to their surroundings. Often, waste products benefit other species. Animal dung is fertilizer for plants. Conversely, the oxygen we breathe is a waste product of plants. Species do not simply change to fit their environment; they modify their environment to suit them as well. Beavers build a dam to create a pond suitable to sustain them and raise young. Alternately, when the environment changes, species can migrate to suitable climes or seek out microenvironments to which they are adapted.

Genetic Variation
Evolution requires genetic variation. If there were no dark moths, the population could not have evolved from mostly light to mostly dark. In order for continuing evolution there must be mechanisms to increase or create genetic variation and mechanisms to decrease it. Mutation is a change in a gene. These changes are the source of new genetic variation. Natural selection operates on this variation.

Genetic variation has two components: allelic diversity and non- random associations of alleles. Alleles are different versions of the same gene. For example, humans can have A, B or O alleles that determine one aspect of their blood type. Most animals, including humans, are diploid -- they contain two alleles for every gene at every locus, one inherited from their mother and one inherited from their father. Locus is the location of a gene on a chromosome. Humans can be AA, AB, AO, BB, BO or OO at the blood group locus. If the two alleles at a locus are the same type (for instance two A alleles) the individual would be called homozygous. An individual with two different alleles at a locus (for example, an AB individual) is called heterozygous. At any locus there can be many different alleles in a population, more alleles than any single organism can possess. For example, no single human can have an A, B and an O allele.

Considerable variation is present in natural populations. At 45 percent of loci in plants there is more than one allele in the gene pool. [allele: alternate version of a gene (created by mutation)] Any given plant is likely to be heterozygous at about 15 percent of its loci. Levels of genetic variation in animals range from roughly 15% of loci having more than one allele (polymorphic) in birds, to over 50% of loci being polymorphic in insects. Mammals and reptiles are polymorphic at about 20% of their loci - - amphibians and fish are polymorphic at around 30% of their loci. In most populations, there are enough loci and enough different alleles that every individual, identical twins excepted, has a unique combination of alleles.

Linkage disequilibrium is a measure of association between alleles of two different genes. [allele: alternate version of a gene] If two alleles were found together in organisms more often than would be expected, the alleles are in linkage disequilibrium. If there two loci in an organism (A and B) and two alleles at each of these loci (A1, A2, B1 and B2) linkage disequilibrium (D) is calculated as D = f(A1B1) * f(A2B2) - f(A1B2) * f(A2B1) (where f(X) is the frequency of X in the population). [Loci (plural of locus): location of a gene on a chromosome] D varies between -1/4 and 1/4; the greater the deviation from zero, the greater the linkage. The sign is simply a consequence of how the alleles are numbered. Linkage disequilibrium can be the result of physical proximity of the genes. Or, it can be maintained by natural selection if some combinations of alleles work better as a team.

Natural selection maintains the linkage disequilibrium between color and pattern alleles in Papilio memnon. [linkage disequilibrium: association between alleles at different loci] In this moth species, there is a gene that determines wing morphology. One allele at this locus leads to a moth that has a tail; the other allele codes for a untailed moth. There is another gene that determines if the wing is brightly or darkly colored. There are thus four possible types of moths: brightly colored moths with and without tails, and dark moths with and without tails. All four can be produced when moths are brought into the lab and bred. However, only two of these types of moths are found in the wild: brightly colored moths with tails and darkly colored moths without tails. The non-random association is maintained by natural selection. Bright, tailed moths mimic the pattern of an unpalatable species. The dark morph is cryptic. The other two combinations are neither mimetic nor cryptic and are quickly eaten by birds.

Assortative mating causes a non-random distribution of alleles at a single locus. [locus: location of a gene on a chromosome] If there are two alleles (A and a) at a locus with frequencies p and q, the frequency of the three possible genotypes (AA, Aa and aa) will be p2, 2pq and q2, respectively. For example, if the frequency of A is 0.9 and the frequency of a is 0.1, the frequencies of AA, Aa and aa individuals are: 0.81, 0.18 and 0.01. This distribution is called the Hardy-Weinberg equilibrium.

Non-random mating results in a deviation from the Hardy-Weinberg distribution. Humans mate assortatively according to race; we are more likely to mate with someone of own race than another. In populations that mate this way, fewer heterozygotes are found than would be predicted under random mating. [heterozygote: an organism that has two different alleles at a locus] A decrease in heterozygotes can be the result of mate choice, or simply the result of population subdivision. Most organisms have a limited dispersal capability, so their mate will be chosen from the local population.

Evolution within a Lineage
In order for continuing evolution there must be mechanisms to increase or create genetic variation and mechanisms to decrease it. The mechanisms of evolution are mutation, natural selection, genetic drift, recombination and gene flow. I have grouped them into two classes -- those that decrease genetic variation and those that increase it.

Mechanisms that Decrease Genetic Variation
Natural Selection
Some types of organisms within a population leave more offspring than others. Over time, the frequency of the more prolific type will increase. The difference in reproductive capability is called natural selection. Natural selection is the only mechanism of adaptive evolution; it is defined as differential reproductive success of pre- existing classes of genetic variants in the gene pool.

The most common action of natural selection is to remove unfit variants as they arise via mutation. [natural selection: differential reproductive success of genotypes] In other words, natural selection usually prevents new alleles from increasing in frequency. This led a famous evolutionist, George Williams, to say "Evolution proceeds in spite of natural selection."

Natural selection can maintain or deplete genetic variation depending on how it acts. When selection acts to weed out deleterious alleles, or causes an allele to sweep to fixation, it depletes genetic variation. When heterozygotes are more fit than either of the homozygotes, however, selection causes genetic variation to be maintained. [heterozygote: an organism that has two different alleles at a locus. | homozygote: an organism that has two identical alleles at a locus] This is called balancing selection. An example of this is the maintenance of sickle-cell alleles in human populations subject to malaria. Variation at a single locus determines whether red blood cells are shaped normally or sickled. If a human has two alleles for sickle-cell, he/she develops anemia -- the shape of sickle-cells precludes them carrying normal levels of oxygen. However, heterozygotes who have one copy of the sickle-cell allele, coupled with one normal allele enjoy some resistance to malaria -- the shape of sickled cells make it harder for the plasmodia (malaria causing agents) to enter the cell. Thus, individuals homozygous for the normal allele suffer more malaria than heterozygotes. Individuals homozygous for the sickle- cell are anemic. Heterozygotes have the highest fitness of these three types. Heterozygotes pass on both sickle-cell and normal alleles to the next generation. Thus, neither allele can be eliminated from the gene pool. The sickle-cell allele is at its highest frequency in regions of Africa where malaria is most pervasive.

Balancing selection is rare in natural populations. [balancing selection: selection favoring heterozygotes] Only a handful of other cases beside the sickle-cell example have been found. At one time population geneticists thought balancing selection could be a general explanation for the levels of genetic variation found in natural populations. That is no longer the case. Balancing selection is only rarely found in natural populations. And, there are theoretical reasons why natural selection cannot maintain polymorphisms at several loci via balancing selection.

Individuals are selected. The example I gave earlier was an example of evolution via natural selection. [natural selection: differential reproductive success of genotypes] Dark colored moths had a higher reproductive success because light colored moths suffered a higher predation rate. The decline of light colored alleles was caused by light colored individuals being removed from the gene pool (selected against). Individual organisms either reproduce or fail to reproduce and are hence the unit of selection. One way alleles can change in frequency is to be housed in organisms with different reproductive rates. Genes are not the unit of selection (because their success depends on the organism's other genes as well); neither are groups of organisms a unit of selection. There are some exceptions to this "rule," but it is a good generalization.

Organisms do not perform any behaviors that are for the good of their species. An individual organism competes primarily with others of it own species for its reproductive success. Natural selection favors selfish behavior because any truly altruistic act increases the recipient's reproductive success while lowering the donors. Altruists would disappear from a population as the non- altruists would reap the benefits, but not pay the costs, of altruistic acts. Many behaviors appear altruistic. Biologists, however, can demonstrate that these behaviors are only apparently altruistic. Cooperating with or helping other organisms is often the most selfish strategy for an animal. This is called reciprocal altruism. A good example of this is blood sharing in vampire bats. In these bats, those lucky enough to find a meal will often share part of it with an unsuccessful bat by regurgitating some blood into the other's mouth. Biologists have found that these bats form bonds with partners and help each other out when the other is needy. If a bat is found to be a "cheater," (he accepts blood when starving, but does not donate when his partner is) his partner will abandon him. The bats are thus not helping each other altruistically; they form pacts that are mutually beneficial.

Helping closely related organisms can appear altruistic; but this is also a selfish behavior. Reproductive success (fitness) has two components; direct fitness and indirect fitness. Direct fitness is a measure of how many alleles, on average, a genotype contributes to the subsequent generation's gene pool by reproducing. Indirect fitness is a measure of how many alleles identical to its own it helps to enter the gene pool. Direct fitness plus indirect fitness is inclusive fitness. J. B. S. Haldane once remarked he would gladly drown, if by doing so he saved two siblings or eight cousins. Each of his siblings would share one half his alleles; his cousins, one eighth. They could potentially add as many of his alleles to the gene pool as he could.

Natural selection favors traits or behaviors that increase a genotype's inclusive fitness. Closely related organisms share many of the same alleles. In diploid species, siblings share on average at least 50% of their alleles. The percentage is higher if the parents are related. So, helping close relatives to reproduce gets an organism's own alleles better represented in the gene pool. The benefit of helping relatives increases dramatically in highly inbred species. In some cases, organisms will completely forgo reproducing and only help their relatives reproduce. Ants, and other eusocial insects, have sterile castes that only serve the queen and assist her reproductive efforts. The sterile workers are reproducing by proxy.

The words selfish and altruistic have connotations in everyday use that biologists do not intend. Selfish simply means behaving in such a way that one's own inclusive fitness is maximized; altruistic means behaving in such a way that another's fitness is increased at the expense of ones' own. Use of the words selfish and altruistic is not meant to imply that organisms consciously understand their motives.

The opportunity for natural selection to operate does not induce genetic variation to appear -- selection only distinguishes between existing variants. Variation is not possible along every imaginable axis, so all possible adaptive solutions are not open to populations. To pick a somewhat ridiculous example, a steel shelled turtle might be an improvement over regular turtles. Turtles are killed quite a bit by cars these days because when confronted with danger, they retreat into their shells -- this is not a great strategy against a two ton automobile. However, there is no variation in metal content of shells, so it would not be possible to select for a steel shelled turtle.

Here is a second example of natural selection. Geospiza fortis lives on the Galapagos islands along with fourteen other finch species. It feeds on the seeds of the plant Tribulus cistoides, specializing on the smaller seeds. Another species, G. Magnirostris, has a larger beak and specializes on the larger seeds. The health of these bird populations depends on seed production. Seed production, in turn, depends on the arrival of wet season. In 1977, there was a drought. Rainfall was well below normal and fewer seeds were produced. As the season progressed, the G. fortis population depleted the supply of small seeds. Eventually, only larger seeds remained. Most of the finches starved; the population plummeted from about twelve hundred birds to less than two hundred. Peter Grant, who had been studying these finches, noted that larger beaked birds fared better than smaller beaked ones. These larger birds had offspring with correspondingly large beaks. Thus, there was an increase in the proportion of large beaked birds in the population the next generation. To prove that the change in bill size in Geospiza fortis was an evolutionary change, Grant had to show that differences in bill size were at least partially genetically based. He did so by crossing finches of various beak sizes and showing that a finch's beak size was influenced by its parent's genes. Large beaked birds had large beaked offspring; beak size was not due to environmental differences (in parental care, for example).

Natural selection may not lead a population to have the optimal set of traits. In any population, there would be a certain combination of possible alleles that would produce the optimal set of traits (the global optimum); but there are other sets of alleles that would yield a population almost as adapted (local optima). Transition from a local optimum to the global optimum may be hindered or forbidden because the population would have to pass through less adaptive states to make the transition. Natural selection only works to bring populations to the nearest optimal point. This idea is Sewall Wright's adaptive landscape. This is one of the most influential models that shape how evolutionary biologists view evolution.

Natural selection does not have any foresight. It only allows organisms to adapt to their current environment. Structures or behaviors do not evolve for future utility. An organism adapts to its environment at each stage of its evolution. As the environment changes, new traits may be selected for. Large changes in populations are the result of cumulative natural selection. Changes are introduced into the population by mutation; the small minority of these changes that result in a greater reproductive output of their bearers are amplified in frequency by selection.

Complex traits must evolve through viable intermediates. For many traits, it initially seems unlikely that intermediates would be viable. What good is half a wing? Half a wing may be no good for flying, but it may be useful in other ways. Feathers are thought to have evolved as insulation (ever worn a down jacket?) and/or as a way to trap insects. Later, proto-birds may have learned to glide when leaping from tree to tree. Eventually, the feathers that originally served as insulation now became co-opted for use in flight. A trait's current utility is not always indicative of its past utility. It can evolve for one purpose, and be used later for another. A trait evolved for its current utility is an adaptation; one that evolved for another utility is an exaptation. An example of an exaptation is a penguin's wing. Penguins evolved from flying ancestors; now they are flightless and use their wings for swimming.
__________________
Mullen4Prez is offline  
Old 04-09-2005, 02:12 PM   #381
Banned
 
Join Date: Nov 2004
Location: The Great Beyond//
Posts: 8,637
Local Time: 11:57 AM
Evolution is a change in the gene pool of a population over time. A gene is a hereditary unit that can be passed on unaltered for many generations. The gene pool is the set of all genes in a species or population.

The English moth, Biston betularia, is a frequently cited example of observed evolution. [evolution: a change in the gene pool] In this moth there are two color morphs, light and dark. H. B. D. Kettlewell found that dark moths constituted less than 2% of the population prior to 1848. The frequency of the dark morph increased in the years following. By 1898, the 95% of the moths in Manchester and other highly industrialized areas were of the dark type. Their frequency was less in rural areas. The moth population changed from mostly light colored moths to mostly dark colored moths. The moths' color was primarily determined by a single gene. [gene: a hereditary unit] So, the change in frequency of dark colored moths represented a change in the gene pool. [gene pool: the set all of genes in a population] This change was, by definition, evolution.

The increase in relative abundance of the dark type was due to natural selection. The late eighteen hundreds was the time of England's industrial revolution. Soot from factories darkened the birch trees the moths landed on. Against a sooty background, birds could see the lighter colored moths better and ate more of them. As a result, more dark moths survived until reproductive age and left offspring. The greater number of offspring left by dark moths is what caused their increase in frequency. This is an example of natural selection.

Populations evolve. [evolution: a change in the gene pool] In order to understand evolution, it is necessary to view populations as a collection of individuals, each harboring a different set of traits. A single organism is never typical of an entire population unless there is no variation within that population. Individual organisms do not evolve, they retain the same genes throughout their life. When a population is evolving, the ratio of different genetic types is changing -- each individual organism within a population does not change. For example, in the previous example, the frequency of black moths increased; the moths did not turn from light to gray to dark in concert. The process of evolution can be summarized in three sentences: Genes mutate. [gene: a hereditary unit] Individuals are selected. Populations evolve.

Evolution can be divided into microevolution and macroevolution. The kind of evolution documented above is microevolution. Larger changes, such as when a new species is formed, are called macroevolution. Some biologists feel the mechanisms of macroevolution are different from those of microevolutionary change. Others think the distinction between the two is arbitrary -- macroevolution is cumulative microevolution.

The word evolution has a variety of meanings. The fact that all organisms are linked via descent to a common ancestor is often called evolution. The theory of how the first living organisms appeared is often called evolution. This should be called abiogenesis. And frequently, people use the word evolution when they really mean natural selection -- one of the many mechanisms of evolution.

Common Misconceptions about Evolution
Evolution can occur without morphological change; and morphological change can occur without evolution. Humans are larger now than in the recent past, a result of better diet and medicine. Phenotypic changes, like this, induced solely by changes in environment do not count as evolution because they are not heritable; in other words the change is not passed on to the organism's offspring. Phenotype is the morphological, physiological, biochemical, behavioral and other properties exhibited by a living organism. An organism's phenotype is determined by its genes and its environment. Most changes due to environment are fairly subtle, for example size differences. Large scale phenotypic changes are obviously due to genetic changes, and therefore are evolution.

Evolution is not progress. Populations simply adapt to their current surroundings. They do not necessarily become better in any absolute sense over time. A trait or strategy that is successful at one time may be unsuccessful at another. Paquin and Adams demonstrated this experimentally. They founded a yeast culture and maintained it for many generations. Occasionally, a mutation would arise that allowed its bearer to reproduce better than its contemporaries. These mutant strains would crowd out the formerly dominant strains. Samples of the most successful strains from the culture were taken at a variety of times. In later competition experiments, each strain would outcompete the immediately previously dominant type in a culture. However, some earlier isolates could outcompete strains that arose late in the experiment. Competitive ability of a strain was always better than its previous type, but competitiveness in a general sense was not increasing. Any organism's success depends on the behavior of its contemporaries. For most traits or behaviors there is likely no optimal design or strategy, only contingent ones. Evolution can be like a game of paper/scissors/rock.

Organisms are not passive targets of their environment. Each species modifies its own environment. At the least, organisms remove nutrients from and add waste to their surroundings. Often, waste products benefit other species. Animal dung is fertilizer for plants. Conversely, the oxygen we breathe is a waste product of plants. Species do not simply change to fit their environment; they modify their environment to suit them as well. Beavers build a dam to create a pond suitable to sustain them and raise young. Alternately, when the environment changes, species can migrate to suitable climes or seek out microenvironments to which they are adapted.

Genetic Variation
Evolution requires genetic variation. If there were no dark moths, the population could not have evolved from mostly light to mostly dark. In order for continuing evolution there must be mechanisms to increase or create genetic variation and mechanisms to decrease it. Mutation is a change in a gene. These changes are the source of new genetic variation. Natural selection operates on this variation.

Genetic variation has two components: allelic diversity and non- random associations of alleles. Alleles are different versions of the same gene. For example, humans can have A, B or O alleles that determine one aspect of their blood type. Most animals, including humans, are diploid -- they contain two alleles for every gene at every locus, one inherited from their mother and one inherited from their father. Locus is the location of a gene on a chromosome. Humans can be AA, AB, AO, BB, BO or OO at the blood group locus. If the two alleles at a locus are the same type (for instance two A alleles) the individual would be called homozygous. An individual with two different alleles at a locus (for example, an AB individual) is called heterozygous. At any locus there can be many different alleles in a population, more alleles than any single organism can possess. For example, no single human can have an A, B and an O allele.

Considerable variation is present in natural populations. At 45 percent of loci in plants there is more than one allele in the gene pool. [allele: alternate version of a gene (created by mutation)] Any given plant is likely to be heterozygous at about 15 percent of its loci. Levels of genetic variation in animals range from roughly 15% of loci having more than one allele (polymorphic) in birds, to over 50% of loci being polymorphic in insects. Mammals and reptiles are polymorphic at about 20% of their loci - - amphibians and fish are polymorphic at around 30% of their loci. In most populations, there are enough loci and enough different alleles that every individual, identical twins excepted, has a unique combination of alleles.

Linkage disequilibrium is a measure of association between alleles of two different genes. [allele: alternate version of a gene] If two alleles were found together in organisms more often than would be expected, the alleles are in linkage disequilibrium. If there two loci in an organism (A and B) and two alleles at each of these loci (A1, A2, B1 and B2) linkage disequilibrium (D) is calculated as D = f(A1B1) * f(A2B2) - f(A1B2) * f(A2B1) (where f(X) is the frequency of X in the population). [Loci (plural of locus): location of a gene on a chromosome] D varies between -1/4 and 1/4; the greater the deviation from zero, the greater the linkage. The sign is simply a consequence of how the alleles are numbered. Linkage disequilibrium can be the result of physical proximity of the genes. Or, it can be maintained by natural selection if some combinations of alleles work better as a team.

Natural selection maintains the linkage disequilibrium between color and pattern alleles in Papilio memnon. [linkage disequilibrium: association between alleles at different loci] In this moth species, there is a gene that determines wing morphology. One allele at this locus leads to a moth that has a tail; the other allele codes for a untailed moth. There is another gene that determines if the wing is brightly or darkly colored. There are thus four possible types of moths: brightly colored moths with and without tails, and dark moths with and without tails. All four can be produced when moths are brought into the lab and bred. However, only two of these types of moths are found in the wild: brightly colored moths with tails and darkly colored moths without tails. The non-random association is maintained by natural selection. Bright, tailed moths mimic the pattern of an unpalatable species. The dark morph is cryptic. The other two combinations are neither mimetic nor cryptic and are quickly eaten by birds.

Assortative mating causes a non-random distribution of alleles at a single locus. [locus: location of a gene on a chromosome] If there are two alleles (A and a) at a locus with frequencies p and q, the frequency of the three possible genotypes (AA, Aa and aa) will be p2, 2pq and q2, respectively. For example, if the frequency of A is 0.9 and the frequency of a is 0.1, the frequencies of AA, Aa and aa individuals are: 0.81, 0.18 and 0.01. This distribution is called the Hardy-Weinberg equilibrium.

Non-random mating results in a deviation from the Hardy-Weinberg distribution. Humans mate assortatively according to race; we are more likely to mate with someone of own race than another. In populations that mate this way, fewer heterozygotes are found than would be predicted under random mating. [heterozygote: an organism that has two different alleles at a locus] A decrease in heterozygotes can be the result of mate choice, or simply the result of population subdivision. Most organisms have a limited dispersal capability, so their mate will be chosen from the local population.

Evolution within a Lineage
In order for continuing evolution there must be mechanisms to increase or create genetic variation and mechanisms to decrease it. The mechanisms of evolution are mutation, natural selection, genetic drift, recombination and gene flow. I have grouped them into two classes -- those that decrease genetic variation and those that increase it.

Mechanisms that Decrease Genetic Variation
Natural Selection
Some types of organisms within a population leave more offspring than others. Over time, the frequency of the more prolific type will increase. The difference in reproductive capability is called natural selection. Natural selection is the only mechanism of adaptive evolution; it is defined as differential reproductive success of pre- existing classes of genetic variants in the gene pool.

The most common action of natural selection is to remove unfit variants as they arise via mutation. [natural selection: differential reproductive success of genotypes] In other words, natural selection usually prevents new alleles from increasing in frequency. This led a famous evolutionist, George Williams, to say "Evolution proceeds in spite of natural selection."

Natural selection can maintain or deplete genetic variation depending on how it acts. When selection acts to weed out deleterious alleles, or causes an allele to sweep to fixation, it depletes genetic variation. When heterozygotes are more fit than either of the homozygotes, however, selection causes genetic variation to be maintained. [heterozygote: an organism that has two different alleles at a locus. | homozygote: an organism that has two identical alleles at a locus] This is called balancing selection. An example of this is the maintenance of sickle-cell alleles in human populations subject to malaria. Variation at a single locus determines whether red blood cells are shaped normally or sickled. If a human has two alleles for sickle-cell, he/she develops anemia -- the shape of sickle-cells precludes them carrying normal levels of oxygen. However, heterozygotes who have one copy of the sickle-cell allele, coupled with one normal allele enjoy some resistance to malaria -- the shape of sickled cells make it harder for the plasmodia (malaria causing agents) to enter the cell. Thus, individuals homozygous for the normal allele suffer more malaria than heterozygotes. Individuals homozygous for the sickle- cell are anemic. Heterozygotes have the highest fitness of these three types. Heterozygotes pass on both sickle-cell and normal alleles to the next generation. Thus, neither allele can be eliminated from the gene pool. The sickle-cell allele is at its highest frequency in regions of Africa where malaria is most pervasive.

Balancing selection is rare in natural populations. [balancing selection: selection favoring heterozygotes] Only a handful of other cases beside the sickle-cell example have been found. At one time population geneticists thought balancing selection could be a general explanation for the levels of genetic variation found in natural populations. That is no longer the case. Balancing selection is only rarely found in natural populations. And, there are theoretical reasons why natural selection cannot maintain polymorphisms at several loci via balancing selection.

Individuals are selected. The example I gave earlier was an example of evolution via natural selection. [natural selection: differential reproductive success of genotypes] Dark colored moths had a higher reproductive success because light colored moths suffered a higher predation rate. The decline of light colored alleles was caused by light colored individuals being removed from the gene pool (selected against). Individual organisms either reproduce or fail to reproduce and are hence the unit of selection. One way alleles can change in frequency is to be housed in organisms with different reproductive rates. Genes are not the unit of selection (because their success depends on the organism's other genes as well); neither are groups of organisms a unit of selection. There are some exceptions to this "rule," but it is a good generalization.

Organisms do not perform any behaviors that are for the good of their species. An individual organism competes primarily with others of it own species for its reproductive success. Natural selection favors selfish behavior because any truly altruistic act increases the recipient's reproductive success while lowering the donors. Altruists w
__________________
Mullen4Prez is offline  
Old 04-09-2005, 02:14 PM   #382
Banned
 
Join Date: Nov 2004
Location: The Great Beyond//
Posts: 8,637
Local Time: 11:57 AM
Is that enough or would you like more
__________________
Mullen4Prez is offline  
Old 04-09-2005, 02:17 PM   #383
Blue Crack Distributor
 
VintagePunk's Avatar
 
Join Date: Jan 2005
Location: In a dry and waterless place
Posts: 55,732
Local Time: 06:57 AM
Quote:
Originally posted by mikal


hehe. no, i just passed out, literally.
Too bad. It coulda been fun.

__________________
VintagePunk is offline  
Old 04-09-2005, 02:27 PM   #384
Blue Crack Supplier
 
~BrightestStar~'s Avatar
 
Join Date: Jan 2005
Location: Gettin' hot in a photobooth....livin it up in Ikeaville
Posts: 35,735
Local Time: 07:57 AM
Quote:
Originally posted by Mullen4Prez
Is that enough or would you like more
omg. Holy crap!
Steal my textbook did ya?
__________________
~BrightestStar~ is offline  
Old 04-09-2005, 02:31 PM   #385
Blue Crack Addict
 
mikal's Avatar
 
Join Date: Nov 2000
Location: Black Lodge
Posts: 24,898
Local Time: 05:57 AM
Quote:
Originally posted by VintagePunk


Too bad. It coulda been fun.

oh, just wait till tonight.
__________________
mikal is online now  
Old 04-09-2005, 02:34 PM   #386
Blue Crack Distributor
 
VintagePunk's Avatar
 
Join Date: Jan 2005
Location: In a dry and waterless place
Posts: 55,732
Local Time: 06:57 AM
Quote:
Originally posted by mikal


oh, just wait till tonight.
I'll wear something pretty.
__________________
VintagePunk is offline  
Old 04-09-2005, 02:46 PM   #387
Blue Crack Addict
 
mikal's Avatar
 
Join Date: Nov 2000
Location: Black Lodge
Posts: 24,898
Local Time: 05:57 AM
fuckin sweet!
__________________
mikal is online now  
Old 04-09-2005, 02:49 PM   #388
Blue Crack Supplier
 
~BrightestStar~'s Avatar
 
Join Date: Jan 2005
Location: Gettin' hot in a photobooth....livin it up in Ikeaville
Posts: 35,735
Local Time: 07:57 AM


Now now Mikal, you treat VP right, y'hear?
__________________
~BrightestStar~ is offline  
Old 04-09-2005, 02:55 PM   #389
Blue Crack Distributor
 
VintagePunk's Avatar
 
Join Date: Jan 2005
Location: In a dry and waterless place
Posts: 55,732
Local Time: 06:57 AM
Quote:
Originally posted by mikal
fuckin sweet!
Sweet...but hot. Good, but very, very bad.

The whole angel/devil contradiction. That's me.

__________________
VintagePunk is offline  
Old 04-09-2005, 03:10 PM   #390
Blue Crack Addict
 
starsgoblue's Avatar
 
Join Date: Aug 2004
Location: Looking for direction to perfection
Posts: 17,828
Local Time: 06:57 AM
Quote:
Originally posted by discothequeLP
yeah it would


i kept biting her neck. . . is that bad

Not if you look like B


Hey all!
__________________

__________________
starsgoblue is offline  
 

Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



All times are GMT -5. The time now is 06:57 AM.


Powered by vBulletin® Version 3.8.8 Beta 1
Copyright ©2000 - 2017, vBulletin Solutions, Inc.
Design, images and all things inclusive copyright © Interference.com